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Abstract It is often found that heterosis tends to in-
crease with genetic distance of the parents, though the
correlation is not usually very close. It is therefore
important to test the null hypothesis that the correlation
is zero. The present work shows that standard proce-
dures tend to yield too liberal tests, owing to the lack of
independence among genetic distances and among het-
erosis estimates. A valid alternative is to use a permu-
tation test, which was first suggested by Mantel [(1967)
Cancer Res 27: 209-220). This test is well-known among
plant breeders and geneticists, who often use it to test
the correlation among two distance matrices. Its use is
not restricted to the comparison of distance matrices.
This is demonstrated in the present work, using two
published datasets on marker-based genetic distances of
maize inbreds or populations and heterosis of their
crosses. It is shown that the test is also applicable in the
presence of missing data.

Introduction

In studies on heterosis, it is frequently of interest to
assess the relationship between genetic distance among
parents and the heterosis observed in their crosses. Most
studies have been conducted with the hope of revealing
strong relationships that could be of practical interest
for hybrid performance prediction. Experimental results
have proven highly dependent on the genetic material,
and several syntheses (Melchinger 1999) and theoretical
studies (Charcosset and Essioux 1994) have clarified the
reasons for this variation. Several instances exist, such as
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hybrids between inbred lines from different heterotic
groups, where no relationship is expected.

Most authors use either Pearson’s correlation or
simple linear regression for assessing the heterosis—dis-
tance association (Barbosa et al. 1996, 2003; Betran et al.
2003; Drinic et al. 2002; Gopal and Minocha 1997; Girke
et al. 2001; Joyce et al. 1999; Kwon et al. 2002a, 2002b;
Lanza et al. 1997; Meng et al. 1996; Parentone et al. 2001;
Riaz et al. 2001; Maroof et al. 1997; Reif et al. 2003a,
2003b; Sant et al. 1999; Shieh and Thseng 2002; Xiao
et al. 1996). Typically, all pairwise genetic distances and
all pairwise measures of heterosis or similar quantities
(specific combining ability, etc.) are compiled into sym-
metric association matrices and related to one another by
correlation or regression analysis. Estimates of correla-
tion or the regression coefficient per se are the most
crucial pieces of information obtained in such analyses. It
is often found that the correlation is not very close, and
an important additional question is whether the corre-
lation between genetic distance and heterosis is signifi-
cantly different from zero.

Genetic distance and heterosis can be regarded as
different measures of association among the hybrid
parents. Generally, when determining the significance of
correlation between two association matrices, it is
important to note that elements of either matrix are
stochastically dependent (see ‘“Appendix” for two
examples). An appropriate procedure in this situation is
to use a permutation test (Sokal and Rohlf 1995; Manly
1997), which was first proposed by Mantel (1967) for the
correlation among two distance matrices and which is
readily available in many packages, e.g., NTSYS-pc
(Rohlf 1998). Whereas it is mostly used for comparing
two distance matrices, the test is more generally appli-
cable for testing the correlation of any type of associa-
tion matrix.

The purposes of the present work are (1) to study the
effect of ignoring the lack of independence among ge-
netic distances and among heterosis estimates when
testing their correlation and (2) to increase the awareness
among plant breeders and geneticists that Mantel’s
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permutation test appropriately addresses the lack-of-
independence problem. The permutation test is exem-
plified using two published datasets on maize.

Simulation study

Let d;; and h; be the associations among parents i and j
(i, j=1, . . ., n) regarding two characteristics. For
example, d; may be a genetic distance among parents i
and j, whereas /; is the mid-parent heterosis in their
crosses. Data x;, y;, and z; (i, j=1, . . . , n) were gener-
ated as independent standard normal deviates. A dis-
tance was computed as d;= |x; -x;/. To study the test of
correlation between two distances, a second distance was
computed as /1;;=|[y; -y;|. For mimicking the correlation
among a distance and an estimate of mid-parent heter-
osis and of better-parent heterosis, h;=z;—(y;+ y,)/2
and h;= z;—max(y;, y;) were computed, respectively. In
either case, the correlation of d;; and /; was tested using
standard procedures (Sokal and Rohlf 1995), assuming
independence among the dj; and among the /4y ie.,
t=+/n(n—1)/2=2|r|/.V1 —r2, where r is the sample
correlation among d;; and h;;, was compared to a t-dis-
tribution with n(n—1)/2—2 degrees of freedom. This
standard test assumes normality, which in this simula-
tion will be violated for both dj; and h; Thus, for
comparison, Spearman’s rank correlation, rg, was com-
puted and tested by the same r-test as Pearson’s corre-
lation r. This test is approximate in small samples. For
very small n, one should use an exact test in pratice. For
brevity, only results for the approximate test are shown,
which is valid asymptotically, providing the indepen-
dence assumption holds. For each setting, 100,000 sim-
ulation runs were performed. Results are presented in
Table 1.

It is seen that both tests become rather liberal as n
increases. This behavior does not even vanish asymp-
totically, as n increases towards infinity. The main
problem here is not lack of normality, otherwise the test
based on Spearman’s correlation should be valid. The
problem rests with the lack of independence of entries in
both matrices.

Not too much should be made of the differences
among the three types of estimates based on phenotypic
data (heterosis and simple difference among parents).
Specifically, the results do not lend themselves to iden-
tify conditions under which the standard test might still
be trusted. The studied settings are just arbitrary
examples to demonstrate the general problem over a
range of cases.

When entries in one of the two association matrices
are stochastically independent, the standard test of the
correlation (or regression) coefficient is valid. This can
be seen by observing that the ¢-test of the correlation
coefficient is equivalent to that of the regression coeffi-
cient. The test of the regression coefficient essentially
treats the regressor variable as fixed quantity.
Thus, stochastical dependence among observed levels of

the regressor variable becomes a non-issue. Taking
the association matrix with dependent entries as the
regressor variable, we see that the standard test of the
regression coefficient, and thus that of the correlation
coefficient, must be valid. For example, when simulating
d;=|x; -x;jand h;=z; for n=20, the simulated type I
errors at a=5% were 0.0509 for Spearman and 0.0517
for Pearson.

It is likely that independence of entries in an associ-
ation matrix will be rare in practice. An example is F;
performance in a case where there are no additive gene
effects. The presence of additive gene effects will induce
dependence among F; performances of hybrids involv-
ing the same parent. Thus, whereas in some rare cases
the standard test may be valid under strong assump-
tions, it is suggested here that as a rule, Mantel’s test (see
below) be used instead.

The permutation test

It is convenient to collect d; and h; into symmetric
association matrixes D and H, respectively. The null
hypothesis of independence among d;; and h; may be
tested by a permutation procedure as follows (Mantel
1967; Sokal and Rohlf 1995; Good 2000):

1. Compute correlation r from the upper triangular
entries of the observed D and H.

2. Generate a permuted set of labels 1 to n, where n is
the dimension of D and H; use this set to permute
columns and rows in D; compute r from the upper
triangular entries of the permuted D and H (r); re-
peat this M times.

3. Let my be the number of times, where r,>r. The one-
sided permutation P-value is computed as P=
(mt+1)/(M+1). A two-sided P-value is computed by
the same equation, letting mt be the number of times,
where |r,|>[r].

This procedure may be applied also when some
observations in D and H are missing completely at
random. Moreover, the test can be used with estimates
of the regression coefficient in place of the correlation.

Example

To illustrate the permutation test, data on seven maize
populations by Reif et al. (2003a) were used. Heterosis in
days to silking and modified Roger’s distances based on
SSR marker data are shown in Table 2. Pearson’s cor-
relation coefficient () among genetic distance and het-
erosis is —0.44. Using the standard two-sided ¢-test, this
has a P-value of 0.0466229, which is just significant at
the conventional 5% level. By comparison, the two-si-
ded P-value based on 100,000 permutations is
0.1446286, which is not significant. In this case, using the
permutation procedure leads to the opposite conclusion



97

Table 1 Results of simulation study on standard test of correlation (Pearson and Spearman) among square matrices D and H at a nominal
significance level of a=5%, using 100,000 simulation runs per setting

Sample size

Type I error of standard test («=25%) for correlation of distance d;;= |x; —x;| with

Another Mid-parent Better-parent
distance ;= [y; -yl heterosis h;=z; - (y;+ /2 heterosis /;= z;~—max (y;, ;)

n Pearson Spearman Pearson Spearman Pearson Spearman
3 0.0501 0.3339% 0.0505 0.3328% 0.0490 0.3317%
4 0.0726 0.0551 0.0514 0.0590 0.0547 0.0609
5 0.0717 0.0628 0.0530 0.0568 0.0607 0.0626
6 0.0734 0.0645 0.0558 0.0573 0.0667 0.0651
7 0.0764 0.0662 0.0585 0.0571 0.0752 0.0697
8 0.0802 0.0677 0.0613 0.0600 0.0803 0.0734
9 0.0868 0.0717 0.0630 0.0606 0.0893 0.0793
10 0.0957 0.0765 0.0645 0.0604 0.0973 0.0855
11 0.1057 0.0818 0.0675 0.0631 0.1058 0.0929
12 0.1137 0.0881 0.0708 0.0662 0.1106 0.0960
13 0.1247 0.0916 0.0744 0.0687 0.1221 0.1060
14 0.1376 0.0994 0.0770 0.0694 0.1275 0.1083
15 0.1459 0.1047 0.0799 0.0723 0.1376 0.1162
16 0.1583 0.1115 0.0821 0.0730 0.1454 0.1226
17 0.1681 0.1170 0.0826 0.0743 0.1524 0.1274
18 0.1774 0.1226 0.0884 0.0790 0.1618 0.1343
19 0.1881 0.1301 0.0905 0.0803 0.1695 0.1398
20 0.1985 0.1370 0.0955 0.0835 0.1786 0.1474

Entries dj; in matrix D are distances among parents, whereas entries
h; in matrix H are either distances among parents or heterosis
estimates of their crosses. Distances and heterosis estimates are
computed based on simulated data x;, y;, and z; (for details, see
text)

Table 2 Genetic distances for seven maize populations computed
from SSR data (below diagonal modified Roger’s distances) and
mid-parent heterosis for days to silking of crosses (above diagonal)
(reproduced from Reif et al. 2003a)

Population Pool24 Pop2l Pop22 Pop25 Pop29 Pop32 Pop43
Pool24 - 0.5 -04 0.7 -03 -07 -13
Pop21 0219 - -04 -04 -04 -07 -12
Pop22 0.203 0.222 - -0.6 -1.5 -12 -18
Pop25 0.224 0272 0.250 - -09 -09 -05
Pop29 0.216 0.236 0.233 0.259 - -0.7 0.2
Pop32 0.270  0.305 0.284 0.263 0.285 - -0.9
Pop43 0.248 0.286 0.268 0.278 0.274 0.318 —

compared to the standard test. The observed difference
reflects the fact that the standard test is on the liberal
side, as was also found in the simulation study.

To exemplify use of the procedure with missing
observations, data on 18 maize inbred lines and their
hybrids published by Barbosa et al. (2003) were used.
Heterosis estimates and genetic distances based on
AFLP data and Jaccard’s similarity are reproduced in
Table 3. There are five missing values for the heterosis
estimates. r among genetic distance and heterosis is 0.67.
By the standard test, this has a P-value of 8.99x1072',
whereas the two-sided P-value based on 100,000 per-
mutations is 9.99x107°. Both P-values are highly sig-
nificant, though there is a notable difference, the
standard test being considerably more significant.

#For small n, results are dominated by the discreteness of the null
distribution, and an exact test is to be preferred in practice. For
n =73, the smallest possible exact P-value is 0.3333, which coincides
with the simulated P-value. For n>3, the exact test yields some-
what more conservative simulated P-values (results not shown)

Again, this confirms that the standard test is on the
liberal side. Another reason for the difference is the
discreteness of the permutation distribution.

Concluding remarks

The present work has not addressed the computation of
power. There does not seem to be a competitive alter-
native to the permutation approach suggested in this
work. Therefore, the use of power calculations would be
mainly restricted to the determination of sample size.
Such calculations would require an explicit genetic
model for heterosis and for the relationship of genetic
distance and heterosis. The type of model would be
highly dependent on the types of species and of popu-
lation studied. Also, with heterosis being a very complex
phenomenon, this would require a rather complex model
to be practically relevant, and it is not easy to decide
which of the many possible candidate models is prefer-
able in a given context. Parameterization of all model
parameters poses an additional problem. Thus, it does
not seem straightforward to devise a simple and prac-
tical stragegy for power calculations.

Plant breeders, geneticists, and researchers in many
other fields of science routinely use Mantel’s permuta-
tion test for comparing two distance matrices (Dutilleul
et al. 2000), thus appropriately addressing the lack-of-
independence problem. The main message of the present
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Table 3 Genetic distances for 18 maize inbred lines computed from AFLP data (below diagonal Jaccard’s similarity coefficient) and mid-

parent heterosis of crosses (above diagonal) (reproduced from Barbosa et al. 2003)

Lines 105-01105-02105-03105-04105-05105-06105-07105-08106-09106-10106-11106-12106-13106-14106-15106-16106-17106-18

105-01—

105-020.48
105-030.55
105-040.52
105-050.49
105-060.54
105-070.51
105-080.56
106-090.63
106-100.56
106-110.60
106-120.61
106-130.62
106-140.60
106-150.59
106-160.54
106-170.57
106-180.58

4.64

0.52
0.47
0.46
0.51
0.52
0.56
0.61
0.55
0.57
0.58
0.61
0.58

4.25
4.06
0.55
0.57
0.57
0.53
0.40
0.67
0.63
0.66
0.67
0.63
0.65

4.20
4.35
3.93

5.36
4.80
4.00
4.59

0.55
0.58
0.62
0.63
0.56
0.65
0.66
0.63
0.63

5.27
4.02
5.33
5.12
5.82

5.92
3.55
4.36
4.58
4.92
2.59

0.56
0.66
0.61
0.64
0.65
0.64
0.63

3.97
3.48
2.50
3.92
4.87
5.69
4.51

4.82
4.55
391
5.03

3.88
4.14
3.86
3.80
4.66
5.31
4.75
4.46
3.66

4.60
4.17
4.37
4.34
5.12
6.04
5.00
4.95
5.08
4.69

433
4.22
4.20
4.07
5.19
5.79
5.47
4.76
4.25
3.20

391
3.30
3.04
3.29
3.86
443
4.21
3.89
3.41
4.78
3.38
3.64

431
4.89
4.51
4.37
5.21
4.54
4.64
4.71
4.87
4.10
1.75

4.99
5.66
3.24
5.87
6.40
5.69
5.32
493
6.06
5.15
4.55
4.13
4.11
5.30

0.65
0.56
0.54

4.46
4.14
2.84
1.87

4.11
4.10
3.85
4.24
4.51
4.81
4.84
4.40
3.51
4.25
1.17
1.63
4.01
1.51
4.47
5.44

0.14

4.00
4.64
3.92
4.18
4.35
5.40
4.60
4.77
5.42
4.30
0.96
1.31
3.32
2.05
3.74
4.00
0.44

work is that the same problem occurs with other types of
association data, namely with estimates of heterosis
(mid-parent or better-patent) or specific combining
ability, and that Mantel’s test can be used in these cases
as well. An SAS/IML macro for the permutation test
will be made available on the author’s homepage at
http://www.uni-hohenheim.de/bioinformatik/.

Appendix

Using results on the distribution of linear functions of
random variables, it is straightforward to see that het-
erosis estimates involving the same parent are stochas-
tically dependent. For example, consider two mid-
parant heterosis estimates h;=z;~(y;+y;)/2 (parents i
and j) and Ay = zig—(y; + yx)/2 (parents i and k), where z;,
Ziks Vi» Vj» and y are independent normal deviates with
constant variance. The correlation of /;; and hy is 1/6, so
the two estimates are stochastically dependent.

Here is a simple example demonstrating that genetic
distances involving the same parent are stochastically
dependent. Assume that three lines 7, j, and k are se-
lected at random from a population of inbred lines, and
consider a single locus with alleles ¢; und a,. Let p be
the allele frequency of a; and ¢ the allele frequency of a,
and define a dummy variable, w, indexed by parents.
For example, w;=0 when parent i is homozygous for
allele a; and w;=1 when parent i is homozygous for
allele a,. The Euclidean distances of the three parents at
the locus are dj;=|w; -w;|, dy. = [w; -wil|, and dj. = [w; -wi|.
Table 4 gives the joint distribution of the three pairwise
distances. To see that the distances are stochastically
dependent, consider the conditional probability of the
event d;=0, given that dy=1, P(d;=0ldy=1)=(p>
q+pH)(p* q+pg*+p* g+pg?)=0.5, and the marginal
probability of the event d;=0, P(d;=0)= P +p?

Table 4 Possible realizations of random draws of z;, z;, and z with
associated genetic distances d;;= |zj — zj |, dy = |z; — 2|, and dj = |z;
— zx| and joint probabilities P(dy;, di, d)

Dummy Distances Joint
variables probability®
Zj Zj Zk d;_‘j di djk P(dip dige, djk)
0 0 0 0 0 0 P

0 0 1 0 1 1 P yq

0 1 0 1 0 1 e

0 1 1 1 1 0 pgz

1 0 0 1 1 0 P q

1 0 1 1 0 1 g

1 1 0 0 1 1 pgz

1 1 1 0 0 0 q

ap Allele frequency of allele a,, ¢ allele frequency of allele a,

g+pg*+¢°. Under stochastical independence, both
probabilities must be equal. Obviously, P(d;=0|dy=1)
# P(d;=0) when p # ¢, in which case the distances dj;
and dj are stochastically dependent. For example, when

p=0.7, one finds P(d;=0)=0.58 #0.5=P(d;=0|-
dikzl).
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